IMPACT OF CPAP ON CEREBRAL BLOOD FLOW AND CSF FLOW

Theresia I. Yiaillourou¹, Jose Haba-Rubio², Raphael Heinzer², Eleonora Fornani³, Nicolas Chevrey³, Francesco Santini⁴, Nikolaos Stergiopulos⁵, Bryn A. Martin²

¹École Polytechnique Fédérale de Lausanne Laboratory of Hemodynamics and Cardiovascular Technology Switzerland, ²Centre Hospitalier Universitaire Vaudois(CHUV), Centre for Investigation and Research on Sleep(CIRS), Lausanne, Switzerland, ³Center for Biomedical Imaging (CIBM), CHUV, Switzerland, ⁴University of Basel Hospital, Department of Radiology, ⁵Conquer Chiari Research Center, University of Akron, OH, U.S.A.

IMPORTANCE FOR CHIARI PATIENTS

Little is known about how lung pressure can alter intracranial dynamics. Patients with Chiari malformation have reported symptoms associated with coughing and sneezing and have occurrence of sleep apnea. This study will help quantify how lung pressure can change the intracranial dynamics. A detailed understanding of these dynamics could help provide new treatment possibilities for patients.

INTRODUCTION

![Figure 1. Mechanism of obstructive sleep apnea](image1)

![Figure 2. CPAP therapy as the gold standard treatment for sleep apnea](image2)

HYPOTHESIS OF THE STUDY

![Figure 3. Sagittal view of the MR measurement locations (left), Axial view of the region of interest (ROI) of blood vessels and CSF at the C2-C3 level as visualized by Segment software (right).](image3)

GOAL

To quantify the impact of CPAP at 15 cmH2O on cerebral blood flow (CBF) and CSF flow dynamics using a specific MRI protocol.

METHODS

1. pcMRI prospectively gated with measurement of CSF and CBF flow with and without CPAP at 17 cm H2O
2. Study group: 25 healthy male subjects
3. Monitored: Transcutaneous PCO2, heart rate, SaO2

PRELIMINARY RESULTS

Figure 4. Arterial, venous and CSF flow measurements with (top row) and without CPAP (bottom row). Bold lines denote the average flow waveform for all the subjects

1. CSF pulsation ↓, Venous flow ↑ at the C2-C3 under CPAP
2. No significant change of CBF at the C2-C3 level under CPAP
3. PCO2 ↓ 5%, HR ↑ 4% under CPAP

CONCLUSION

1. CPAP at 17 cmH2O decreases CSF pulse amplitude at C2-C3
2. CPAP at 17 cm H2O increases venous outflow at the C2-C3
3. CSF system appeared to have a damping influence
4. No effect of CPAP on total CBF

REFERENCES